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Analysis of a one-dimensional fracture model 

0 Morgenstem, I M Sokolovt and A Blumen 
Thwretische PolymeqhysiL, Univenit8.t Freiburg RheinstraSSe 12. D-79104 Freiburg, Federal 
Republic of Germany 

Received 22 April 1993 

Abstract. We investigate the dynamics of frauUre of a sruface layer which cnvm an dastically 
stretched subshate. For this we map the mechanical model onto its electrical cotinterpan, an 
anay of resistors and fuses. We show the existence of an intrinsic correlarion lenglh which 
govems the process. Starting with the investigation of the failure characteristics of a single 
intact system. we obtain general exprersions for the distribution of breakup currents and for 
the positions of failure: these allow us to desciite the fragmentation process. We show that 
the distribution of fragment sizes and the mean fragment sizes o k n  scale. and compare the 
analytical results to numerical simularions of ihe process. 

1. Introduction 

Numerous authors have paid attention to breaking phenomena in recent years 11-91. 
Many papers have been devoted both to the geometry of single cracks and also to the 
statistical properties of an ensemble of cracks [1-9]. A special example is provided by the 
fragmentation of surface layers [1C-12], with applications both in nature and technology. 
For example one can imagine the cracking of mud or paint upon drying or the rupture of 
coatings upon bending or stretching [13-151. These systems share a distinctive property, 
namely the often large difference between the elastic properties of the bulk matter and those 
of the surface layer. 

In the present article we analyse the statistics of fragmentation of surface layers. More 
specifically, we deal with problems that are one-dimensional by their physical nature, e.g. 
the breaking of a thin film covering a stretched sheet or a bent beam. In this case the 
stress field is taken to be homogeneous, and cracks grow perpendicular to the direction 
of the force. The latter condition is valid if the inhomogeneity in the constitution of the 
sample does not play a significant role. Our aim is to elucidate the interplay between the 
different parameters. We identify and describe different regimes, depending on the stage of 
fragmentation. 

Of course, a one-dimensional model cannot account for such features as the shape of the 
cracks. Some of its properties, however, will also show up in more general two-dimensional 
systems. Among these will be the existence of a characteristic length scale describing the 
stress relaxation, and the presence of two different breaking regimes determined by whether 
the mean fragment size is larger or smaller than this characteristic length. 

We analyse the probability at which a fragment of size N eventually breaks up at site 
k under a force F or, alternatively, in an electrical analogue, at a given current J .  In the 
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limit of large N we obtain closed formulae for those breaking probabilities. This enables 
us to derive d i n g  laws connecting the average fragment size and the external stress or 
current. Numerical simulations are performed to verify the results. 

The article is structured as follows. In section 2 we formulate our mechanical model and 
show that it is analogous to an electrical network. In section 3 we consider the properties 
of the electrical circuit and show that it displays a characteristic length scale. In section 4 
we extensively consider the failure characteristics of a single fragment and present both 
analytical and numerical results. Section 5 is devoted to the analysis of the fragmentation 
process. In section 5.1 we consider the later stages of the fragmentation process and show 
that the distribution of fragment sizes exhibits scaling behaviour under ,a wide range of 
circumstances. In section 5.2 we deal with a different type of fragmentation pmess not 
discussed in section 5.1. Finally, in section 6 we present the conclusions and summarize 
the paper. 

2. The model 

The model we consider is the one-dimensional analogue of a construction used by Meakin 
[IO-lZl, see figure I(a). Imagine a bulk material covered by a brittle surface layer. Both 
the bulk and the surface layer are assumed to be chains of springs characterized by their 
elastic constants D and d ,  respectively. The surface is attached to the bulk elastically, so 
that the surface layer may move relatively to the bulk. This is described in our model by the 
nodes on the two chains being painvise connected through leaf springs (of elastic constant 
6). The surface layer is assumed to be brittle, so that each spring in it may break under 
stress. We denote the force at which the kth spring breaks by Fk. 

d d d 

Figure 1. Mechanical (a) and electrical (b) realization of the one-sided ladder model; see text 
for details. 

At small elongations the model is scalar; as we continue to show, it is then also analogous 
to the electrical circuit depicted in figure I@). The arguments which support the analogy 
are as follows. Mechanical forces at a point at rest cancel. Since we are only interested 
in motions parallel to the axis of the system, we neglect forces perpendicular to it. Then 
the electrical counterparts of the forces are currents; these satisfy Kirchhoffs current law, 
i.e. the sum of all currents entering a knot vanishes. Ohm’s law U = R I  and Hooke’s law 
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x = D-’ F then imply that displacements in the mechanical model correspond to electrical 
voltage differences. In the same way the mechanical spring constants have the electrical 
conductivities R-’ as counterparts. 

The arrangement shown in figure I@) is a one-sided ladder [17]; it differs from 
figure l(a) only in that the R-resistors replace the D-springs; analogously, r replaces d 
and p replaces S. The resistances are taken to be the same throughout each group of 
resistors; moreover, the r-resistors act as fuses as well. The currents J k  at which these 
fuses bum are then equivalent to the thresholds FX in the mechanical model. We denote by 
p ( J )  the statistical distribution law which the Jks obey. Furthermore, we assume R << r, 
so that the overall resistance of the ladder does not change by defecting fuses. This reflects 
the idea that-mechanically speaking-almost the entire strain energy is absorbed by the 
bulk material. Finally, the number of failed fuses will be taken to be small in comparison 
to the total number of fuses. 

Our model parallels the random fuse model used by Duxbury et al [16], but in our case 
the model shows negative feedback, i.e. the formation of a new crack is less likely in the 
neighbourhood of a crack already present (vide infra). 

- 
. 

In the following sections we discuss the model mostly in electrical terms. 

3. Electrical properties of a single fragment 

We consider a one-sided ladder of size N, consisting of N - 1 elements; see figure l(b). 
An external voltage is applied between A and B, causing an overall current I to flow. What 
is the value of the current j k  flowing through the kth fuse? Applying Kirchhoff s voltage 
law to the voltage differences around the kth circuit yields 

O =  R(jk - I ) + p C i ~ - j j x - 1 ) + r j x + ~ ( j x - j k + l )  (1) 

or 

R I  = jk (R + 20 f r) - p( jk -1  + jk+l). (2) 

This system of linear equations can be solved as in [17], where the calculations are. performed 
in detail. Here we only sketch the main ideas. 

The substitution 2p cosh 2fi = R + r + 2 p  or 

,U = 1/2cosh-’[l+ (R +r)/(Zp)l (3) 

transforms equation (2) to 

2jxcosh2fi = jk - i  + j k + i  + Rl/p. (4) 

The general solution to this system of linear inhomogeneous equations is 

j k  = (1 +aeaW ++5’e-ZkW)IR/(R+r) (5)  

as may be verified by insertion into equation (4). The jks satisfy the boundary conditions 
j o  = j N  = 0. This determines the values of the coefficients a! and 6. One has 

a! = -l/(l+eZ”) (6) 
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FigureZ. Thecurrentinafrapentjk/J= f ( k .  N)as  
given by equations (8) and (9). ”he values For+ = N p  
are 0.3, 1, 3, IO. Note the plateau region in the case 
x = 10. 

Now one can cast equation (5) into the compact form 

j k  = f ( k ,  N ) J  
with J = I R / ( R  + r )  and 

f ( k ,  N )  = 1 - eZ”/(l + ezN@) - e-””/(l+ e-zN”). (9) 
This function attains its maximum f- = 1 - l/cOsh(Np) at k,, = N / 2  and vanishes at 
k = O  and k =  N .  

A plot of f as a function of k is given in figure 2 for some values of the parameter 
x = N p .  From the plot two regimes are easily identified. For N p  >> 1 one has 

1 - fork < N L otherwise. 
f ( k ,  N )  1 - e-Z(N-k)J’ for N - k << N (10) 

We call the region for which f ( k ,  N) 1 holds the plateau. The plateau is clearly seen 
in figure 2 for N p  = 10. Furthermore, the boundaries determine the regime outside the 
plateau; their region of influence is characterized by the correlation length e 1/11. The 
current through the fuses in the plateau region is simply given by J .  

In the other limit Np << 1 one has by expanding the exponentials to second order 

f ( k ,  N )  = pz[N2 - ( N  - 2k)’] /2  = 2 p z k ( N  - k )  (11) 
fmax is then given by fmal = g z N z / 2 .  

For convenience we introduce the auxiliary function g(0, x )  according to 

Hence g(6’.x) is symmetrical in % and ranges between 0 and I for -112 < 0 < 1/2. As 
x --f 03, g ( 0 , x )  -+ 1 for all 101 c 112, and for x << 1 one has 

(14) g(e, X) = g(e) = 1 - 4e2 
independent of x .  



Analysis of a one-dimensional fracture model 4525 

4. Breaking characteristics of a single fragment 

In this section we consider the failure. of a fuse in an initially intact single fragment The 
results (distributions of .break-up currents and the position of the failing fuse) will tum out 
to be helpful in the analysis of the fragmentation process. Here we determine the break-up 
properties of a fragment using the distribution of fuse strengths. 

4.1. General forms 

We start from a fragment of the ladder of size N .  We number the fuses of this fragment 
from 1 to N - I ,  and focus on the first fuse to burn. 

For this we turn on and gradually increase J .  All local currents j k  are. proportional to 
J ,  so that we eventually reach a point where for the first time a fuse fails, i.e. is removed 
from the system irreversibly. Thus the corresponding current becomes j ;  = 0, where the 
prime denotes the situation after the failure, and k is the number of the corresponding fuse. 
The set of currents j ;  for the newly formed fragments of sizes k and N - k ,  respectively, 
follows from equations (8) and (9): 

(15) 

Here we use the fact that R << r, so that the overall current is not affected by the failure 
of the fuse. 

Let us now compute the probability that the kth fuse is the first one to fail. Given J ,  
the probability density @k(J)  d J  for the fuse k to fail is 

@ d J ) d J  =rp[f(k N ) J l f ( k ,  N ) d J  (16) 

f (m.  k )  J for 0 < m < k I f ( m - k , N - k ) J  f o r k + l < m < N .  
j& = 

where we use the fact that the distribution of maximal currents is rp(i). 
rp(i’) di’. The probability that 

the kth fuse does not fail when the external current is increased up to J is given hy 
1 - l: @ k ( j )  d j  = 1 - F [ f ( k ,  N )  J l .  Then the joint probability density pN(k, J )  for the 
kth fuse to fail when the current reaches the value J while all other fuses stay intact is 
given by 

We now introduce the distribution function F(i) = 

P N &  J )  = f@. N)rpo[f (k.  N)JI rill - F(f(m. “ 1  (17) 
m i w  

or, equivalently, by 

The integration of equation (18) with respect to J yields the total probability q ( k [ N )  for a 
fragment of size N to break at the position k: 

q ( k l N )  = ~ “ d k  J)dJ. 

From equation (18) one can readily infer that the g(klN) are normalized, i.e. that 
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holds. To see this one only has to notice that the prefactors of the exponentials are the 
derivatives of the corresponding exnonents with regard to J, see equation (16) and the 
definition of F. Similarly, the summation with respect to k gives the distribution r ( J I N )  
of the break-up currents: 

N 
r (JIN)  = z P N ( k ,  J ) .  (21) 

k=O 

A more convenient form of equation (18) holds for N large. In this case we can 
revert from the summation to an integration over m. This corresponds to viewing m 
(or, equivalently, k) as being continuous. We hence change from k to 0 ,  from m to ,¶, 
furthermore, according to equation (12). from f (k, N) to g(B,x), from J to y = Jfmar, 
and from p ~ ( k ,  J )  to P N ( ~ ' ,  y) = N f m p N ( k ,  J). We obtain 

This is the expression we looked for. 
Now our task is to evaluate equation (22) for different x and for different types of 

densities q. A simple case holds for x >> 1. This case is characterized by the appearance 
of a plateau regime. Here g(0, x )  = 1, independent of 6'. Now one can (by neglecting the 
influence of the small regions at the boundaries) evaluate equation (22) in a straightforward 
manner: 

an expression independent of 6'. Evidently, in the plateau regime breaks are homogeneously 
distributed in space. 

The other limit is x << 1, for which f ,  =, x2/2, and g(0, x )  = 1 - 4e2 is parabolic 
and independent of x ,  see equation (14). Denotmg by @(y lN)  the exponential expression 
in equation (22) 

Wl - F(Y - 4B2y)l d,¶) 

the probability density for the fuse at the coordinate 6' to fail is 

Furthermore, the probability density for the current y = .Ifman to induce a failure is 

We furthermore note that the integrand in equation (24) is negative. For large N the 
following approximation is justified 

The reason is that F(y - 4p2y) is either relatively small for all values of ,¶, which. allows 
the logarithm to be expanded to lowest order or that it is large in a certain ,¶-interval, in 
which case @ is practically zero anyhow. 
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4.2. Rectangular (o-distributions 

As examples, we take rectangular forms for the probability distributions (o(i) at which the 
fuses fail [20] 

for i,j, 4 i c imi, + W 
otherwise. 

(o(i) = { 
In these cases we have 

for i < imin 

for i 2 imin + W. 

Now the integration in equation (27) for x << 1 can be performed explicitly. Evidently, for 
y c i,i, one has @(ylN) = 1, whereas for y > i,i, we find 

F(i)  = (i - i&)/ W for imin < i -= imi. + W (29) [: 

Using this expression Q(S lN) ,  equation (25), and R(ylN),  equation (26). can be computed. 
The results depend on whether i,b = 0 or i,i, > 0. For imk > 0 we may replace 
in equation (30) y by i,i. in the denominator and once more take F ( y  - 4B2y) in the 
denominator of equation (25) to be small. We obtain for Q in this approximatiomn 

In equation (31) r(a, x )  denotes the incomplete r-function and'A = (3W/(16iminN))'/3. 
We note that Q ( 0 l N )  is now a bell-shaped function of width A and is concentrated in the 
middle of the segment We have verified numerically that equation (31) is quite accurate 
in the range 0 < A c 1/3. Hence for i d n  > 0 the fuses in the middle of the segment are 
most affected by failures; the effect is much stronger than the distribution of cummts would 
suggest. 

For imin = 0 equation (30) simplifies to 

One obtains from equation (25) 

Q ( 0 l N )  = (3/2)(1 - 40'). (33) 

Now the failures follow the distribution of currents closely. Note also that for i,.:. = 0 the 
distribution Q ( 0 l N )  is independent of N, whereas for imi. 0 its width is N-dependent, 
so that for large N it is strongly concentrated near 0 = 0. Therefore for imin z 0 the 
fragmentation process is almost regular, provided that x <( I. Thus the cases imin = 0 and 
i,h > 0 give rise to quite different types of fragmentation. 

In the case i,i, > 0 the probability distribution R(ylN) of the cumnt at which the first 
fuse of the considered segment fails follows from equations (26) and (24): 
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for y > imj,,. and R ( y l N )  = 0, otherwise. Note that the distribution R ( y l N )  is concentrated 
near y =imin. 

In a similar way from equations (24) and (32) we find for imj,, = 0 

(35) 

for y 2 0. 

4.3. General p-distributions 

We now consider more general p(i)-distributions, as described by the following form: 

for i c imi. 
for imh < i < ihn+ W 
for i  > ih+ W. 

+ l)(i - (36) 

Here CY, A and W are parameters, and  we^ restrict ourselves to CY 

distributions the F ( i )  read 

1: 
-1. For these 

for i c imin 

for i > i,i, + W 
F(i) = A(i - imj,,)'+' for imin < i 4 imh + W (37) 

where A W-l/'e+ll. 
Inserting equation (37) into equation (27) gives, for x << 1, 

Here is given by 

with r being the ordinary r-function. 
The case i,i, > 0 is similar to what is found for a rectangular distribution, equation (28). 

Replacing y by i,i, in the denominator of equation (38), replacing (1 - 4e2)-' by 1 + 4@, 
and neglecting F ( y  - 4 B z y )  in the denominator of equation (25), we obtain an infinite 
series: 

with A = ( N Z , A i ~ ~ ' ) - ' l c 2 . + 3 , / 2 ,  and where the binomial coefficients are, as usual, 

The series simplifies to equation (31) in the case CY = 0, and truncates after CY + 1 terms 
if CY is an integer. Similarly to the case CY = 0, it is a bell-shaped function of width A, 
concentrated at the middle of the segment. 
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Concerning the distribution of buming currents, for imh > 0 equations (27) and (38) 
imply 

provided that y 3 imi.. If y c imin. we have R(y1N) = 0. Here r is given by 
( N I , A . - ' / ~  -2/(%+31. 

The results equations (40) and (43) have been checked by numerical simulations. The 
distributions Q and R have been obtained through lo4 realizations in which a ladder of 
size N = 100 was broken into two pieces. The parameters of the distributions used are 
i,i, = I ,  A = 1 and W = 1, see equation (36). Figures 3(a), e), and (c) correspond to the 
values of a = 0, 1 and 2, respectively, see section 4.2. In figure 3 the relative positions 0 
and relative currents y at which the first fuses fail are given in units of their characteristic 
values A and r .  Note the fair coincidence between the analytical forms and the results of 
the simulations. Note also the fact that A - N-1/(Zn+3L and r - N-2/'L+3' are very small 
for large fragment sizes. 

zmin ) 

In the case imi, = 0 equation (38) simplifies to 

@ ( y l N )  N exp(-NI,Ay"+') (44) 

and equation (25) yields 

We also obtain 

(45) 

(46) 

with OJ = ( N I , A ) - ~ / ( ~ + ~ ) .  
The results of the numerical simulations are displayed in figure 4, together with the 

analytical forms, equations (45) and (46). All parameters (apart from imin) are the same as 
in figure 3. 

Note that in this case the width of the Q-distribution does not depend on the size of 
the ladder and thus remains finite in the limit of large N .  Thus we expect the resulting 
fragmentation process to differ significantly from the one obtained under the: condition 
imin > 0, vide infra. 

We see that in both cases onIy the behaviour of rp(i) in a small neighbourhood of 
i = imi, enters the analysis. Therefore distributions q(i) admitting a low-end expansion 
according to equation (36) lead to the same probability distributions R and Q as those 
given by equations (40). (45). (43) and (46). Thus the type of fragmentation behaviour is 
determined solely by the values of imin and a, but not by the behaviour of q(i )  at larger 
values of i, a result which we have also verified numerically. 



4530 0 Morgenstern et al 

1 .o 
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1 .o 

0.5 

0.0 

1 .o 

0.5 

0.0 
1 0.0 0 1 2 

e Y l W  

Figure 3. The distributions Q(B(N1 and R ( y ( N )  in the case i,in > 0 (see (ext for details). Note 
the different scales The full curves wnespond lo the analytical forms, equations (40) and (43): 
crosses represent the simulation rehuln. In cases (a). (b) and (c) (Y is 0, 1, and 2, respectively. 

5. The fragmentation process 

After establishing the probability distributions for the first fracture of a single chain. we 
now investigate the successive breaking of an initially intact system into several pieces. 
First we focus on the dependence of the average fragment size (L) on J .  At the beginning 
of the process, if (L) >> 6, new fractures form independently of each other and mostly 
in plateau regions. The number of fractures is proportional to F ( J ) ,  with F ( J )  being the 
cumulative distribution function of p. As the process continues, one ,eventually enters the 
regime characterized by (L) 5 6. We now consider this later stage. 
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(a) 1.0 

1 .o 

0.5 
0.5 

0.0 0.0 
I i 

Figure 4. The same as in figure 3. now fori,, = 0. The full curves correspond to the analytical 
forms, equations (45) and (46). In cases (a), (b) and (c) U is 0, I .  and 2 nspectively. Note the 
change of UN*. from figure 3. 

First we present the results of the numerical simulations (see [ZO] for a description 
of the algorithm). Figures 5(a) to (d) present the dependence of (L) on J ,  plotted in a 
double-logarithmical scale. The simulations were done on a system whose total number of 
fuses No equals 5 x 10’. Furthermore, the inverse correlation length /I was chosen to be 
0.001 66 in (a), in (c) and in (d). In case (a) the rectangular distribution q(i)  = 1/2 
for 0 < i < 2 was used, in (c) the form p(i) = 2i for 0 < i < 1, and in (d) the form 
q( i )  = 3i2 for 0 < i < 1. Since, according to the previous section, (Y is given by the 
order with which (0 vanishes at i = 0, these cases stand for (Y = 0, 1 and 2, mpectively. 
figure 5(d) corresponds to a ladder of length NO = 5 x I @  and inverse correlation lengul 
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4 

_I A 3  
V 
0 
- 0 2 (a) (1)) (c:) 

\ ,  
~ Figure 5. The dependence of the mean fragmenr size on the 

~extemal vollage for differen1 disuibulions (0. In cases (a), (c) 
and (d) a is 0, I ,  and 2. Here imjn = 0. Case (3) corresponds 
Io arectanlgolar distribution with i,. > 0. See text for details. 

1 
0 5 

log J 

p = 0.001 66. Here p ( i )  is rectangukwith ih =.0.7 and W = 0.6, see equation (28). 

J is given by a power law 
We see that at the later stages of the fragmentation process the dependence of (L) on 

(L) - J p  (47) 

where the exponent ,9 depends on the distribution q ( i ) .  The numerical values of the 
exponents obtained correspond to fi  = -0.335 in (a), f i  = -0.394 in (c), fi  = -0.420 
in (d), and ,9 = -0.493 for the distribution with i,i. z 0, case (b). The numerical accuracy 
of all values is f0.005. 

We also see that the overall behaviour of the process is somewhat different in the cases 
i,i. = 0 and imin =- 0. In the following two subsections we will analyse the process form a 
theoretical point of view and obtain 

in the case i,i. = 0 and 

p=-' 2 (49) ' 

for i,i, > 0, i.e. we infer the values ,9 = -0.333, -0.4, -0.428 and -0.5 for (a) to (d), 
respectively. As already shown, our simulations agree very well with these results. 

5.1. Scaling fragmentation 

We first analyse the case imm = 0. We will restrict ourselves to situations where the number 
of fuses that fail is small compared to the total number of fuses. Therefore changes in q 
may be ignored. 

With this approximation the fragmentation process can be described by the kinetic 
equation [18,19] 

with n(L,  J )  being the fragment size distribution at a given J .  The meaning of the two 
terms on the right-hand side of equation (50) is evident: the first one describes the decrease 
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in the number of fragments of size L due to splitting (with probability density r(J1L) and 
L taken to be a continuous variable), and the second term reflects the creation of new 
fragments of size L by the splitting of larger fragments of size L'. The factor of two 
stems from the fact that this event can take place with equal probability either at position 
L or at L' - L. Furthermore, r(JIL) and ~ L , ( L ,  J )  are defined as in the previous chapter. 
Neglecting the denominator in equation (18) their explict forms are 

which depends on J only through the characteristic length scale L,(J); p(q) is then a 
universal function of the (dimensionless) length variable q = L/L,. The value L, must 
be chosen in such a way that the substitution of equation (50) into equation (53) yields a 
dimensionless differential equation for p(q). This leads us to the choice 

L, is unique up to a proportionality constant. 
From equation (53) we immediately obtain 

We therefore expect ( L )  to scale according to 

( L )  L, J-'~+'I/c2.+3l (56) 

in agreement with our numerical simulations, see figures 5(a) to (c). 
We can now show the existence of scaling solutions by plotting, at different stages of 

the fragmentation process, the ensuing distributions as functions of the normalized fragment 
length L / ( L ) .  The results of simulations for three different distributions are presented in 
figures 6(a) to (c). Parallelling figure 5, case (a) corresponds to q(i) = 1/2 for 0 Q i Q 2, 
(b) to p(i) = 2i for 0 Q i Q 1, and (c) to p ( i )  = 3iz for 0 Q i Q 1 .  Thus CY is once 
more given by 0, 1 and 2, respectively. No equals 2 x lo6 in case (a), 5 x 16 otherwise, 
and p equals IOm6 in all cases. The crosses, triargles, squares and circles correspond to 
( L )  = 1000, 204, 68 and 20 in figure 6(a), 545, 136, 45 and 14 in figures 6(b) and (c), 
respectively. Note that the forms of the distributions are independent of the stage of the 
fragmentation process; this is a strong support for our scaling hypothesis, equation (53), as 
( L )  is proportional to L,, see equation (55). 

We now turn to the case imj,, > 0, which gives rise to a different type of fragmentation 
process. 
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1 .o t- 

0.5 

0.0 

V<L> 
Figure 6. The distributions of hagment sizes, plotted as functions of L / ( L ) .  In cases (a), (b) 
and (c) (I is 0. 1 and 2, respectively. The msses. triangles, squares and circles display the 
results for different stages of the pmcess. See text for details. 

5.2. Hierarchical fragmentation 

In the case imh =- 0 the later stages of the process are characterized by narrow distributions 
of 8 and y. see equation (38). If (L) < 6, the fragments therefore break up close to their 
middle, where the current attains its maximum. This gives rise to a hierarchical series of 



Analysis of a one-dimensional fracture model 4535 

fractures, as we show in this section. 
Let us assume that upon entering the hierarchical regime, we have a fragment size 

distribution no(L). The maximum current flows in the middle ofthe largest segment, which 
therefore. breaks up next as the process continues. It produces two new segments of nearly 
equal sizes. We thus find a characteristic length Lo defined as the size of the fragment 
which is about to break (i.e. the presently largest fragment). The value of L, is determined 
by the fact that this fragment breaks at y = i,i, or J = 2imh/(pLJ2. Therefm L, is 
given by 

We now freeze the process at a given stage defined by L, and denote the resulting 
distribution by n(L, Lc). Both n and no are normalized to unity. For simplicity we assume 
in the following analysis that breaks occur exactly at the centre of the fragments. 

Then new fragments of size less than L,/2 could not be yet formed, so for L < LJ2 
n(L,  Lc) is equal to no(L) up to a constant due to normalization. Second, by assumption, 
no fragments larger than L, have survived, so for L > L, we have n(L, L,) = 0. 

Let us now pick L E (L,/2, Lc). The number of fragments n(L, LJdL of sizes 
between L and L + dL now is given by those fragments @at were present initially, 
no(L)dL, plus the two halves of the original f rapents  of length 2L having undergone 
one fracture, Zno(2L) d(2L). plus the four quarters of the original fragments of length 4L 
having undergone two fractures, 4no(4L)d(4L), etc. Thus 

m - C4kno(2kL)dL for L E (L,/2, LJ. (59) 
k=O 

By introducing the normalization constant A we obtain 

for L < L,/2 

'(" "I = 1 A-' 24kno(2kL)  for Lc/Z c L < L, 
k=O 

l o  
The normalization constant A is determined by 

for L > L,. 

A grows rapidly as Lc decreases, and therefore the distribution n(L, LJ as given by 
equation (60) also vanishes for L < Lc/2. Thus at the later stages of the process fragments 
have sizes L satisfying L,/2 < L < L,, and 

(L) = K L ~  (62) 
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with 112 e K e 1. According to equations (57) and (62) one then has 

independently of the precise form of q. The distribution of fragment sizes n(L,  L J  is 
nonetheless non-universal, i.e. it depends explicitly on q(i) and n&). 

Note that the onset of the fragmentation process is different from the cases considered 
in the previous subsection. The first failures occur at J = &,in or, in our case, at 
log(J) = log0.7 = -0.155, see figure 5(d). In the doubly logarithmical representation, 
at higher currents the slope of log(L) approaches -1/2 to a good accuracy. 

6. Summary 

In this work we have introduced a model for the fracture of surface layers, and have also 
presented its electrical analogue, a ladder of resistors with fuses sitting on one side. As 
we have shown, the model displays two different regimes for the fragmentation process, 
depending on whether the mean fragment size is large or small compared to an intrinsic 
correlation length. Starting from the failure characteristics of an intact segment we have 
established analytically the main features of a series of fragmentation steps. We have 
confirmed the results-the distributions of the positions of failure and the distributions of 
the break-up currents-through numerical simulations. Furthermore, we have shown that 
after an initial stage of the pmess the mean fragment size (L) decreases according to a 
power law, (L) - JB, as a function of the extemally applied force or current, J. Here the 
exponent p depends on the form of q near the origin. If q(i)  - iu for small i, we obtain 
fi  = -(a+ 1)/(%+3). The resulting distributions of fragment sizes also scale accordingly. 
On the other hand, if q(i)  = 0 for 0 < i < imhr we have p = -112. All these analytically 
obtained results were confirmed through numerical simulations. 
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